Hide

Problem B
Löggeng endanleg stöðuvél - Fyllimengi

Languages en is

Þú færð gefna endanlega löggenga stöðuvél sem samþykkir málið $\mathcal{L}$ og átt að prenta stöðuvél sem samþykkur málið $\overline{\mathcal{L}}$, þ.e. fyllimengi upphaflega málsins.

Inntak

Fyrsta lína inntaksins inniheldur fjórar jákvæðar heiltölur $n$, $c$, $s$ og $f$ þar sem $n$ er fjöldi staða, $c$ er stærð stafrófsins, $s$ er upphafsstaðan og $f$ er fjöldi lokastaða. Önnur línan inniheldur streng $\Sigma = \Sigma _1 \Sigma _2 \dots \Sigma _c$ sem samanstendur af $c$ ólíkum táknum sem eru allt ASCII lágstafir. Þriðja línan inniheldur $f$ ólíkar jákvæðar heiltölur, mengi lokastaða stöðuvélarinnar. Næst fylgja $n$ línur, hver með $c$ jákvæðum heiltölum, sem gefa stöðuskiptatöfluna. Sem sagt, $j$-ta talan á $i$-tu línu gefur stöðuna sem stöðuvélin fer í ef hún var í stöðu $i$ og las inn stafinn $\Sigma _j$.

Hver staða er táknuð með heiltölu frá $1$ til $n$. Gefið er að $n \cdot c \leq 100\, 022$, $1 \leq s \leq n$ og $0 \leq f \leq n$.

Úttak

Prentið hvaða endanlega löggengu stöðuvél sem er sem samþykkir fyllimengi málsins sem inntaksstöðuvélin samþykkir. Úttak þitt á að vera á sama formi og inntakið og á að uppfylla sömu takmörkunum og inntakið.

Sample Input 1 Sample Output 1
3 2 1 1
ab
1
1 2
1 3
3 3
4 2 1 3
ab
2 3 4
1 2
1 3
3 4
4 3
Sample Input 2 Sample Output 2
1 4 1 0
acgt

1 1 1 1
1 4 1 1
acgt
1
1 1 1 1