Problem G
Counting Subsequences (Hard)
“$47$ is the quintessential random number," states the $47$ society. And there might be a grain of truth in that.
For example, the first ten digits of the Euler’s constant are:
2 7 1 8 2 8 1 8 2 8
And what’s their sum? Of course, it is $47$.
Try walking around with your eyes open. You may be sure that soon you will start discovering occurrences of the number $47$ everywhere.
You are given a sequence $S$ of integers we saw somewhere in the nature. Your task will be to compute how strongly does this sequence support the above claims. We will call a continuous subsequence of $S$ interesting if the sum of its terms is equal to $47$.
E.g., consider the sequence $S = (24, 17, 23, 24, 5, 47)$. Here we have two interesting continuous subsequences: the sequence $(23, 24)$ and the sequence $(47)$.
Given a sequence $S$, find the count of its interesting subsequences.
Input
The first line of the input file contains an integer $T$ specifying the number of test cases. There are at most $10$ test cases and each test case is preceded by a blank line.
The first line of each test case contains the length of a sequence $N$, $N \leq 1\, 000\, 000$. The second line contains $N$ space-separated integers – the elements of the sequence. All numbers don’t exceed $20\, 000$ in absolute value.
Output
For each test case output a single line containing a single integer – the count of interesting subsequences of the given sentence.
Sample Input 1 | Sample Output 1 |
---|---|
2 13 -2 7 1 8 2 8 -1 8 2 8 4 -5 -9 7 2 47 10047 47 1047 47 47 |
1 4 |